Phase 1 of EPAct Program E0-E10-E15 Results from

Sept 4, 2008

Preliminary information – not for release outside EPA

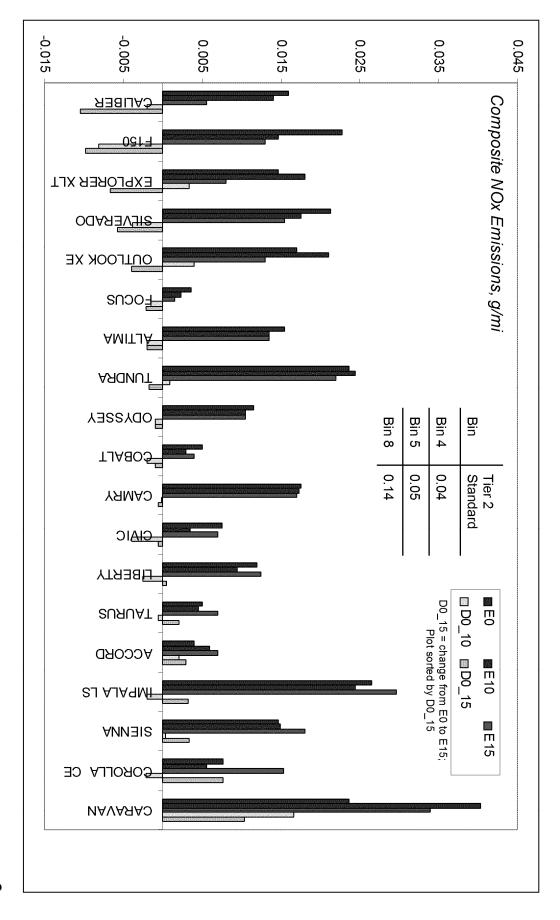
EPAct Program Overview

- EPA/DOE collaboration
- Objective: Establish effects of RVP, T50, T90, aromatic content and EtOH on exhaust emissions from Tier 2 vehicles
- Fuel matrix includes 29 fuels + 2 added by CRC: total of 31
- Test Program Design
- Phase 1: RFS 2 Pilot at 75°F
- 3 fuels (E0, E10 and E15) tested in 19 vehicles
- Test results to be available for RFS 2 NPRM
- Phase 2: RFS 2 Pilot at 50°F
- Same as Phase 1, except temperature
- Phase 3: Main Program
- 25 fuels tested in 19 Tier 2 vehicles, E85 tested in 4 FFVs
- LA92 test cycle used throughout the program
- Species measured: Regulated emissions, CO2, NO2, VOCs, ethanol, carbonyl compounds
- N₂O, NH₃ and HCN by FTIR
- Some PM and SVOC speciation

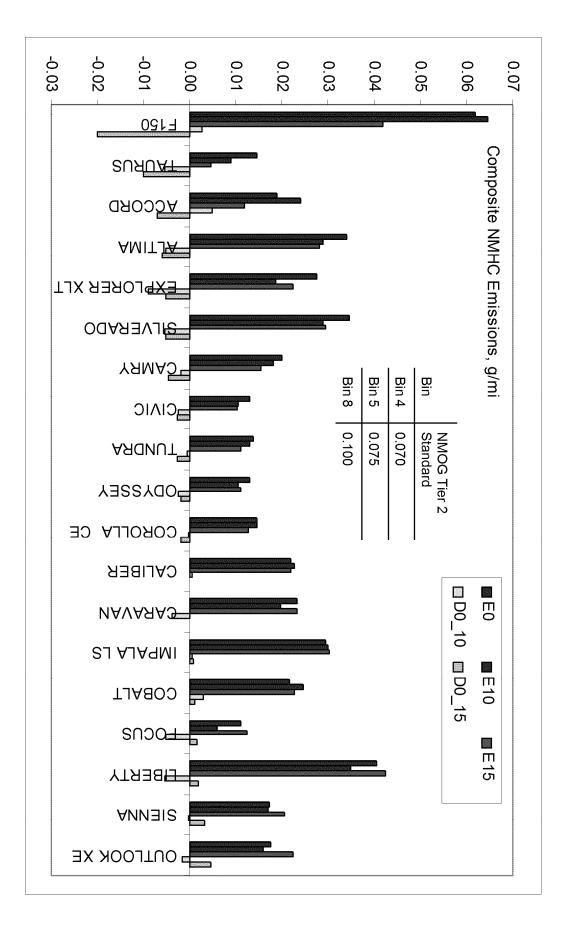
Status of Testing

- completed Tests of E0, E10, E15 in the 19 Tier 2 vehicles have been
- Preliminary statistical analysis is complete

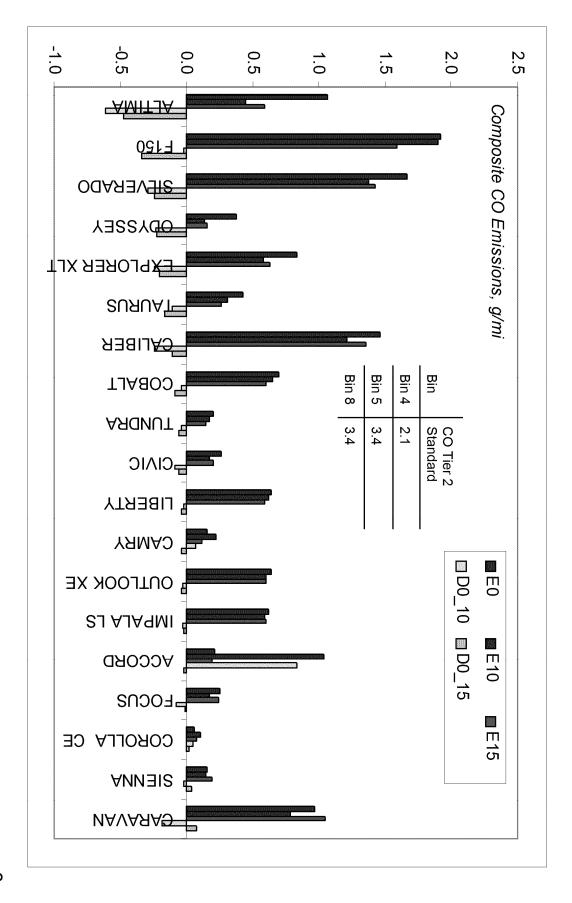
Test cell changeover for Phase 2 (50°F) underway

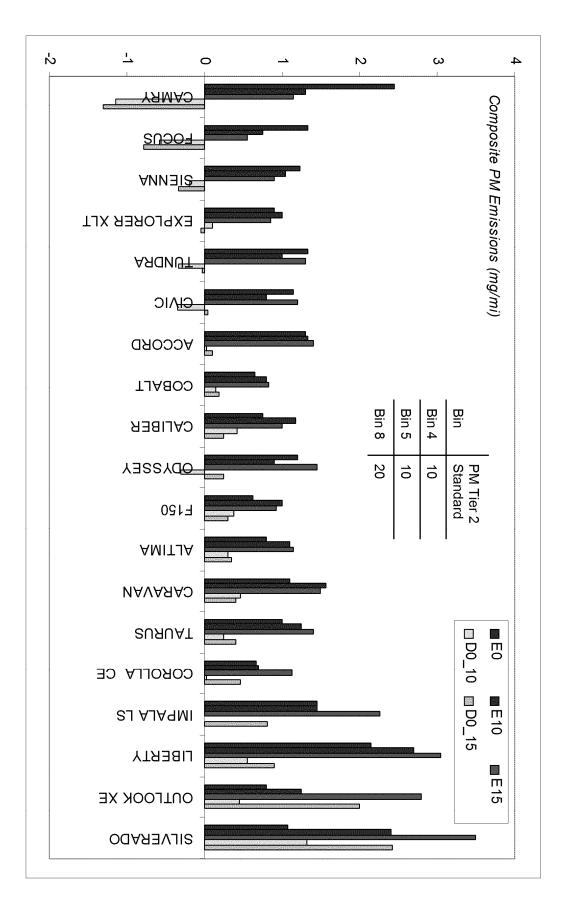

- Expect start of testing by middle of this month
- Majority of testing and data processing issues have been resolved
- Data transmission and QC by EPA
- Issues still requiring resolution include:
- More accurate measurement of exhaust flow using Sensors EFM
- Streamlining of fuel blending algorithms/software
- Testing redesign may be consideration given:
- Fuel blending difficulties
- Initial findings in Phase 1 and 2
- Augment with additional vehicles (NLEV), cycles, fuels, temps, evap

Phase 3 Fuel Blending Issue


- Need to make 25+ additional blends
- (16) EPA blends including (8) E0 and (8) E10 (10) DOE blends including (3) E20, (6) E15 and (1) E85
- (2) additional CRC fuels
- Supplier has approximately 25 "blendstocks"
- Blendstocks may be single compounds or mixture
- Very good at making staple fuels like Indolene
- Not very good at tight parameter research fuel
- Use "historical" knowledge-not exact formula
- EPA attempting to using "ASPEN" modeling software
- Provides consistent blendstock portions approach
- Some blendstock interactions are not fully understood Currently not integrated prediction of desired (T#, arom.,RVP)
- First attempts to use model output did not produce proper fuel
- Falling behind on dates needed to have fuel formulas done
- Delay of phase 3 or reduce ability to randomize fuels could result

Test Fuel Properties

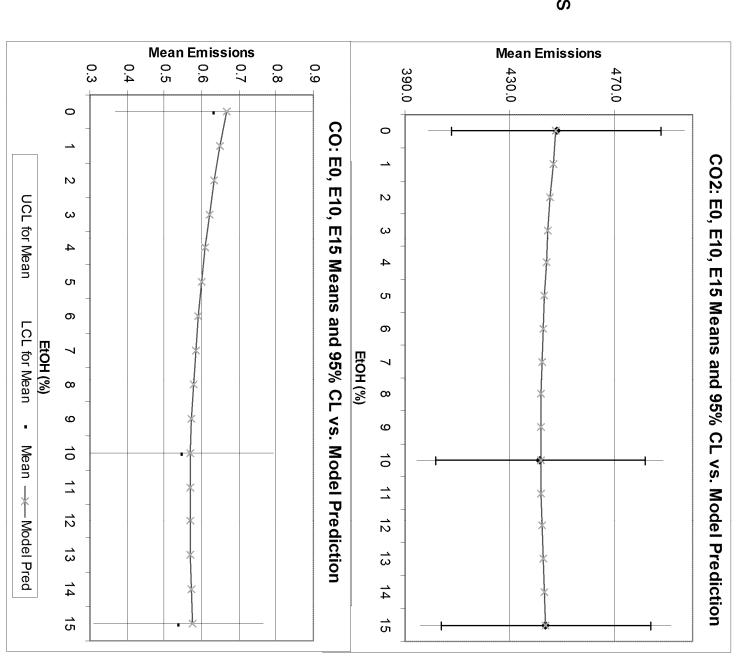

	LIINIII			FUEL	
FINOFENI	CIVI	IVIC I I CC	E0	E10	E15
Ethanol Content	vol. %	D5599	<0.1	9.35	14.5
T50	٥F	D86	215	209	182
Т90	٥F	D86	324	319	310
RVP	psi	D5191	9.17	9.05	8.91
Aromatics	vol. %	D1319	29.3	22.9	18.7
Olefins	vol. %	D1319	6.4	5.7	5.6
Benzene	vol. %	D3606	0.48	0.49	0.46
S	mg/kg	D5453	23	23	21
RON	-	D2699	93.4	93.7	93.9
MON	-	D2700	83.5	84.9	84.6
(R + M)/2	-	Calc.	88.5	89.3	89.2


NOx Emissions
g/mi - means of measurements

NMHC Emissions g/mi - means of measurements

<u>CO Emissions</u> g/mi – means of measurements

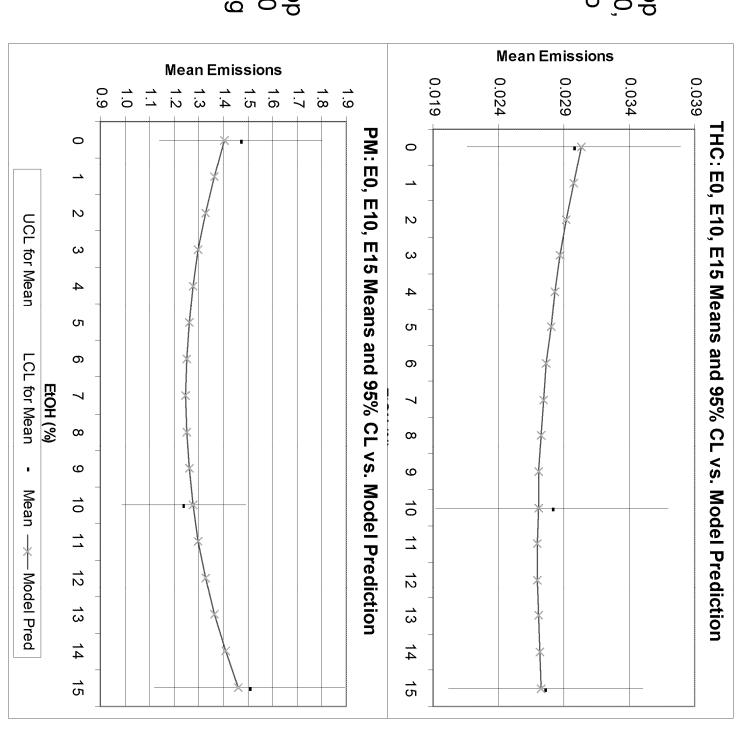
mg/mi – means of measurements

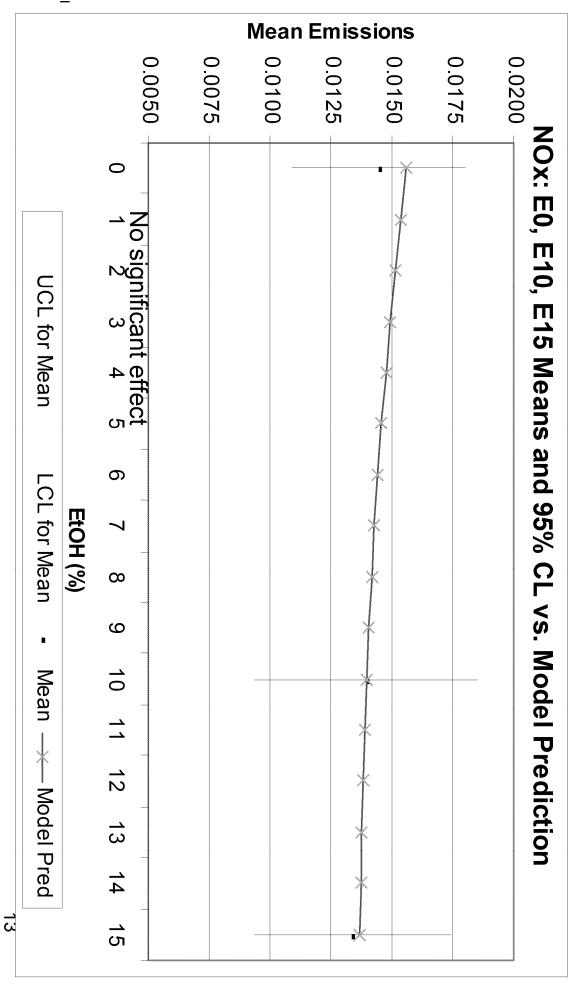

Emission Impacts - Model Outputs (Hoffman Categorical Analysis via Mixed Model, p≤0.05 or p≤0.10)

PM	C02	NMHC	60	THC	NOx		ı
	-1.5	-13.3	-14.6	<u>-</u>	-21.6	Ph1	E10 vs.
-17.3	<u>-1</u> .3					Ph2	E10 vs. E0 Relative Difference (%)
30.4	-1.0	-38.1	-35.6	-27.8		Ph3	e Differen
	<u>-1</u> :3	-12.8	-13.8	-10.2		Comp	ce (%)
24.8	-0.8		-16.4		-18.3	Ph1	E15 vs. E0 R
	-0.9					Ph2	וססו
59.4	-0.6	-35.4	-30.5			Ph3	lative Difference (%
	-0.9	-14.5	-13.3	8.6-		Comp	ce (%)

	Ph1 Ph2 Ph3 Com	Ph2	Ph3	Comp
NOx				-
동				
လ				
NMHC				
C02	0.7			0.4
PM	21.9			1 0 5

- CO₂ and CO results


 Both have significant drop from E0 to E10 then constant to E15
- Means and continuous model shown for comparison



PM

- Significant drop from E0 to E10 then increasing to E15

THCSignificant drop from E0 to E10, but constant to E15

NO_X

Conclusions

- CO, HC, and PM all have significant decreases in emissions as ethanol levels increase from E0 to E10
- E15 (PM may even increase) CO, HC and PM have insignificant changes from E10 to
- starts; over entire cycle composite, Tier 2 NOx seems to NOx has significant decrease from E0 to E10 only for be insensitive to ethanol levels
- This may be due to large variability (overwhelming effect) or insensitivity to fuel

Next steps

- Continue testing phase 2 (50°F)
- the program as is? If we continue seeing no NOx effect, should we continue
- Should we consider changing the program midstream (or even now)? Options?
- Find/add some ethanol "sensitive" vehicles
- Add some tests with fuels that have exactly same properties except for ethanol
- Add FTP tests, which may magnify cold start impact
- supplement with additional '09 funds If we continue as designed or expand, we will need to

Additional Slides

Revised EPAct Fuel Matrix

CKC Additional Fuels	E85 (DOE)			(i dels 20-29)	(Finals 20-29)	Additional Fuels (DOE)	FIIdSE				(Lueis 1/-19)		RFS 2 Subset (EPA/DOE)	Phases 1 and 2	8								(rueis 1-10)		Base Program (FPA)	Phase 3					
31	29 30	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14 4	ದ	12	<u></u>	10	9	0	7	O	ហ	4	ω	2		Fuel#	
160	TBD 150	190	190	150	160	160	160	160	160	160	195	202	215	220	190	190	220	150	190	220	190	220	190	190	240	220	220	240	150	٦°	T50
325	TBD 325	300	340	340	340	340	340	300	300	300	325	325	325	300	300	340	340	340	300	340	340	300	300	340	300	340	300	340	300	۴	T90
20	85 10	15	15	15	20	20	20	20	20	20	15	10	0	10	0	0	0	10	10	10	0	0	0	10	0	10	10	0	10	%	ETOH
10	TBD 10	7	7	10	10	10	7	10	7	7	9	9	9	7	10	7	7	10	10	7	10	10	7	7	7	10	7	10	10	isd	RVP
15	TBD 40	40	ਲੇ	40	40	5	15	ਨਿ	40	15	23	25	30	40	40	15	40	40	40	40	40	र्क	15	5	40	15	ऊ	ऊ	15	%	ARO
17							Revised																								

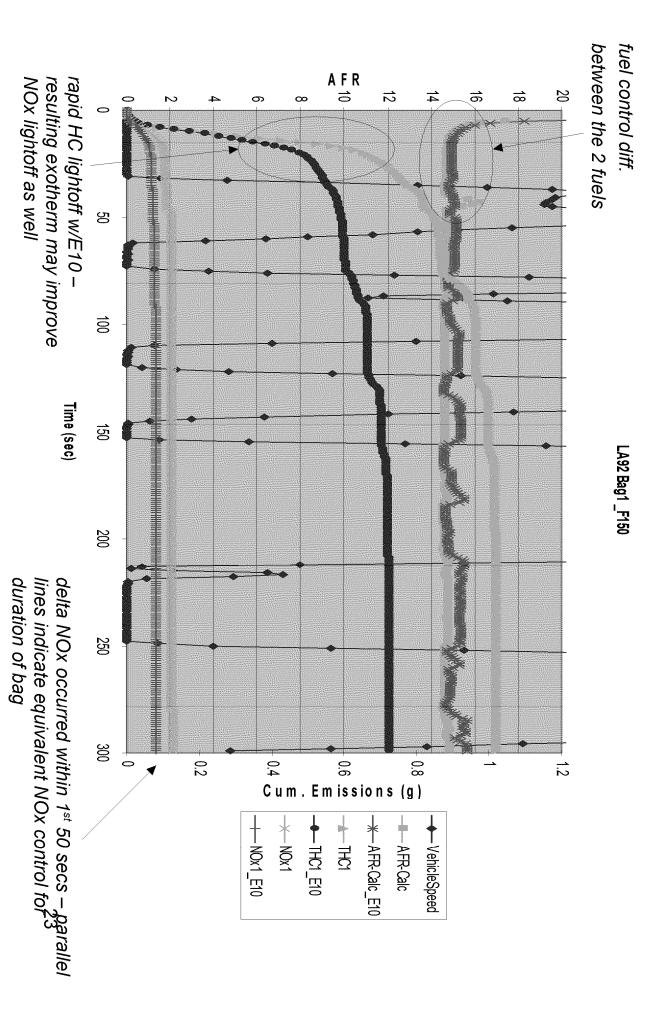
Measured Species

- Bag (phase) level and composite emissions of THC, NMHC, NMOG, CO, CO₂, NOx, NO₂, ethanol and PM
- Bag (phase) level speciated volatile organic compounds (VOCs)
- Over 200 compounds, incl. alcohols and carbonyls
- the following species in raw exhaust: Continuous and integrated by bag (phase) emissions of
- THC, NMHC, CO, CO₂, NOx
- N₂O, NH₃ and HCN by FTIR for a subset of tests
- Semi-volatile and high molecular weight VOC and PM measured in Phases 1 and 2 only

EPAct Vehicles vs. Tier 2 Emission Standards

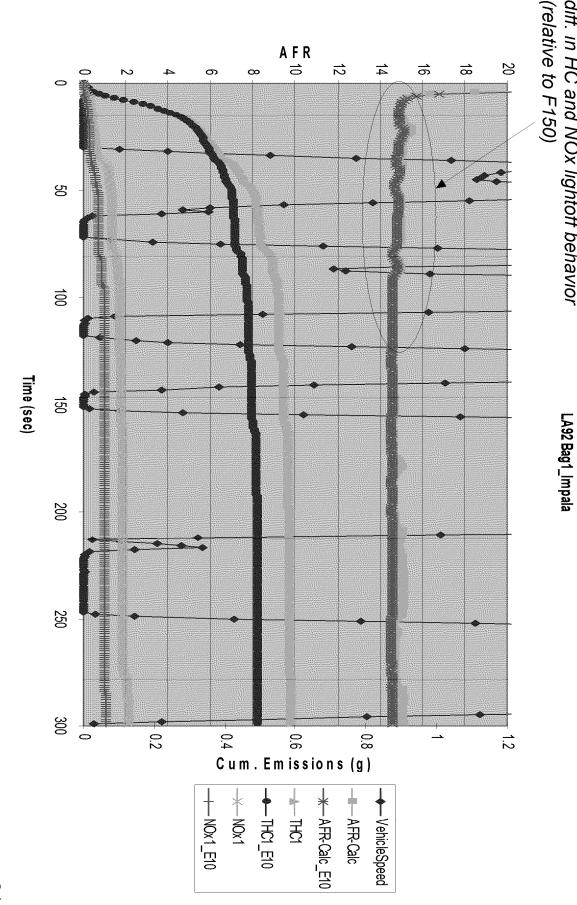
EPAct Vehicle	Tier 2 Bin #	NMOG g/mile	CO g/mile	NOx g/mile	PM g/mile
Ford Focus, Ford Explorer	4	0.070	2.1	0.04	0.01
All other EPAct vehicles	27	0.075	3.4	0.05	0.01
Ford F150, Dodge Caravan	œ	0.100	3.4	0.14	0.02

E10 Impacts on Emissions from Tier 2 Vehicles CRC E-74b Program (7 Vehicles, Mixed Models, p<0.05)

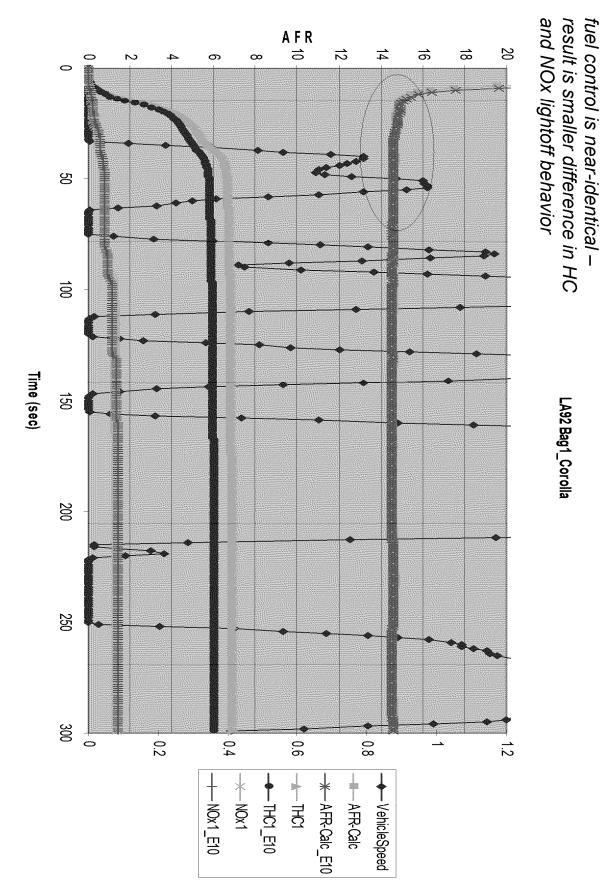

D		Percent Change vs.	ınge vs. E0	
רטווחומווו	Weighted	Bag 1	Bag 2	Bag 3
NOx	1	-	-	-
NMHC	-12.9 (0.1 <p<0.05)< td=""><td>1</td><td>-</td><td>-</td></p<0.05)<>	1	-	-
СО	-22.4	-22.4	-	1
CO ₂	ı	ı	-	-

EPAct Program Timeline

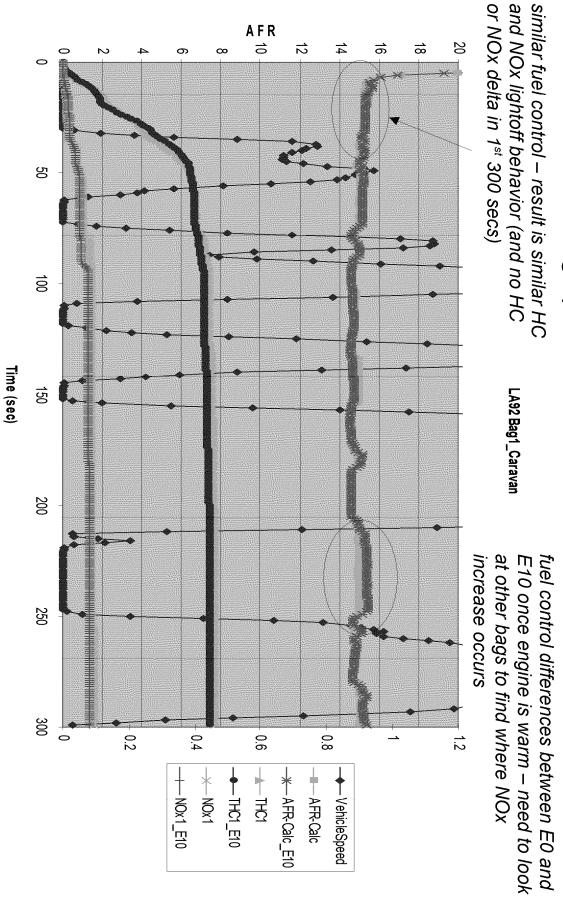
Phase 18 50F setup Phase 2b 50F teardown Phase 3s NREL fuels CRC fuels NREL high emitters draft final report EPANREL review final report	NCLUDES E20 TESTS FOR DOE	Phase 1° 50F setup Phase 2b 50F teardown NREL high emitters Phase 3° NREL fuels draft final report EPA/NREL review final report	ORIGINAL EPAct PROGRAM TIMELINE DEFINED BY SWRI ON FEBRUARY 20, 2008 JAN 2008 FEB 2008 MAR 2008 APR 2008 Phase 1° 6 weeks 7 14 21 28 4 11 18 25 3 10 17 24 31 7 14 21 28 4 50F setup Phase 2° 9 weeks 9 weeks 1 2 3 4 1 2 3 4 NREL high emitters 2 weeks 3 weeks 1 2 3 4 1 2 3 4 NREL fuels° 17 weeks 26 weeks 6 weeks 6 weeks EPA/NREL review 4 weeks 4 weeks 4 weeks
14 weeks 3 weeks 9 weeks 2 weeks 26 weeks 17 weeks 4 weeks 6 weeks 4 weeks	IS FOR DOE S 14 weeks 3 weeks 9 weeks 2 weeks 2 weeks 2 weeks 2 weeks 17 weeks 6 weeks 4 weeks	6 weeks 3 weeks 9 weeks 2 weeks 2 weeks 6 weeks 4 weeks	6 weeks 3 weeks 2 weeks 3 weeks 4 weeks 4 weeks
JAN 2009 5 12 19 26 7 8 9 10	JAN 2008 7 14 21 28	JAN 2009 FEB 2009 MA 5 12 19 26 2 9 16 23 2 9 17 18 19 20 21 22 23 24 25 26	MELINE DEF JAN 2008 7 14 21 28
FEB 2009 2 9 16 23 11 12 15 14	Rafal Sobott FEB 2008 4 11 18 25	FEB 2009 2 9 16 23 21 22 23 24 2	FEB 2008 4 11 18 25
MAR 2009 2 9 16 23 30 15 16 17 18 19	MAR 2008 3 10 17 24 31	MAR 2009 2 9 16 23 30 25 26 1 2 3	WRI ON FEBRU MAR 2008 3 10 17 24 31
FEB 2009 MAR 2009 APR 2009 MAY 200 26 2 9 16 23 2 9 16 23 30 6 13 20 27 4 11 18 10 11 12 18 14 15 16 17 18 19 20 21 22 23 24 25 26	APR 2008 1 7 14 21 28 1 2 3 4	APR 2009 0 6 113 20 27	UARY 20, 200 APR 2008 1 7 14 21 28 1 2 3 4
MAY 2009 4 11 18 25 24 25 26	MAY 2008 5 12 19 26 5 6 7 8	MAY 2009 4 11 18 25 8 9 10 11	MAY 2008 5 6 1 2 1 2
JUN 2009 1 8 15 22 29 2 3 4 5 6	JUN 2008 2 9 16 23 30 9 10 21 12 13	JUN 2009 1 8 15 22 29 6 12 13 14 15 16 17	JUN 2008 2 9 16 23 3 1 2 3
29 6 13 20 27 6 7 8 9 10	JUL 2008 30 7 14 21 28 13 14 4 2 3 4	JUL 2009 29 6 13 20 27 3 16 17 1 2 3 4	JUL 2008 30 7 14 21 28 4 5 6 7 8
AUG 2009 SEP 7 3 10 17 24 31 7 14 0 11 12 13 14 15 16 17	AUG 2008 8 4 111 18 25 1 2 3 4 5 6 7 8	AUG 2 10 17 5 6	AUG 200 4 11 18 9 1 2
SEP 2009 31 7 14 21 2 15 16 17 1 2	SEP 2008 1 8 15 22 9 10 11 12	009 SEP 2009 [24 31 7 14 21 28 14 2 3 4 1 2	2 4 8 8
OCT 200 8 5 12 19 3 4 7	OCT 2008 29 6 13 20 27 9 13 14 15 16 17 1 2 3 1	OCT 2009 28 5 12 19 26 2 3 4	OCT 2008 29 6 13 20 27
99 NOV 2009 26 2 9 16 23 6 3 4	NOV 2008 27 3 10 17 24 1 2 1 2 1	NOV 2009 2 9 16 23 30	NOV 2008 27 3 10 17 24
DEC 2009 3 30 7 14 21 28	DEC 2008 4 1 8 15 22 29 2 3 4 5 6	DEC 2009 3 30 7 14 21 28	P 2008 OCT 2008 NOV 2008 DEC 2008 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29 1


Initial Analysis of LA92 Bag1

Veh. w/largest NOx delta between E0 & E10



Veh. w/lesser NOx delta between E0 & E10


'tighter' fuel control – result is smaller diff. in HC and NOx lightoff behavior

Veh. w/small NOx delta between E0 & E10

Veh. w/large positive NOx delta between E0 & E10

Initial Conclusions:

- How the fuel system reacts to each fuel affects how the catalyst "lights off"
- A system w/lean bias on E10, will have quicker HC lightoff, which may also improve NOx lightoff
- System with identical air-fuel ratio (AFR) traces on each fuel tend to have identical, or similar, lightoff behavior
- Fuel system control strategies are not uniform amongst the OEMs
- Ford F150 ... AFR traces separate at idle (even when engine is warm), and may/may not converge under load
- when engine is warm Chevrolet Impala ... little separation in AFR traces initially, but some separation
- Toyota Corolla ... as close to "line-for-line" as you can get
- Dodge Caravan ... little separation in AFR traces initially, but separation between fuels when warm is sometimes "rich" and sometimes "lean'
- while those with "separation" show a larger NOx effect "tight" fuel control (regardless of ethanol content) show a small NOx effect, Fuel effect on Bag1 NOx emissions is manufacturer-dependent – those with